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Summary 
Conditions and implications for the calculation of self-consistent single 

determinant wave functions for Koopmans’ ions are discussed and a recipe for 
practical computations is given. The concept of Koopmans’ ions has been extended 
to localized ions and a definition for their reorganization energies is proposed. 
Calculations on formaldehyde serve as a numerical illustration. 

Introduction. - For many purposes it is customary to estimate ionization energies 
of molecules by means of Koopmans’ theorem 111, i.e. to interpret the value of 
the orbital energies of canonical Hartree-Fock orbitals as ionization potentials for 
ionization out of the corresponding orbitals. This procedure has the advantage 
that we get information about the different ionization energies of a molecule from a 
single calculation of the ground state wave function. It is well known that the success 
of Koopmans’ theorem is largely due to a cancellation of the (neglected) correlation 
and reorganization effects, both being of considerable magnitude but having 
opposite signs if the correlation energy is larger for the molecule than for the ion. 
More careful calculations of ionization energies have to account for these effects. 
This can be done by various methods, all being considerably more complicate than, a 
Hartree-Fock calculation, e.g. with configuration mixing. Hereby the effect of 
mixing singly excited configurations to the Koopmans wave function can roughly 
be called reorganization whereas correlation stands for the corrections due to doubly 
excited configurations. However the two effects cannot strictly be distinguished. 
An unambiguous definition for the reorganization of a Kooprnans’ ion can be given 
in terms of model wave functions: The difference between a Koopmans’ function 
and the best single determinant for the ionic state in question. 

It is the purpose of this paper to show how the relaxation of the remaining 
electrons upon ionization can be treated in the framework of Hartree-Fock theory, 
i.e. calculating energy-optimized one-determinant wave functions for the different 
Kooprnans’ ions. For the ionic ground state (strictly speaking for the lowest state of 
each symmetry) an open-shell restricted Hartree-Fock calculation (e.g. [2] [3]) for a 
system with one unpaired electron is required. For higher states however the task is 
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less trivial since orthogonality conditions to lower lying states may (and in general 
will) be violated if the wave function of the higher state is optimized independently 
(see [4-61) and because a method of calculation using energy minimization should 
yield a solution corresponding to the lowest possible energy expectation value, thus 
the ground state wave function, if no preventing measures are taken. 

To be sure since the paper by Bagus [7] in 1965 reorganized Hartree-Fock wave 
functions of excited Koopmans’ ions have often been calculated for atoms and 
molecules. The leading determinant of the wave functions by Meyer and Rosmus 
(e.g. [S] [9]) may serve as an example; here the problems arising from non- 
orthogonality have successfully been neglected. For the case of inner shell hole 
states of atoms Bagus [7] has shown that the overlap between reorganized functions 
corresponding to ionization out of different shells is minute (the highest value 
quoted being 0.01). This is of course due to the spatial separation of the shells and 
need not apply for molecules. 

Guest & Saunders [16] have shown that the total energy of a reorganized wave 
function corresponding to an excited Koopmans’ ion is a variational upper bound 
to the exact energy value even if the orthogonality to the reorganized functions of 
lower Koopmans’ ions is lost provided the energy expectation value of a lower state, 
calculated with the optimum orbitals of the higher ion, is not raised above the upper 
state. This result is a consequence of the fact that there is no direct but only second 
order mixing between an optimized single-determinant function and all other 
Koopmans’ configurations if they are formulated with the same orbital set. 

The discussion about non-orthogonality conceals the more important problem 
of the existence of solutions. What one is looking for are side minima of the 
hypersurface of energy expectation values (not local minima in a geometrical sense 
but minima of the energy as a function of variation parameters). Such minima 
may - but need not - exist. A further question is whether a minimum can un- 
equivocally be interpreted in terms of orbitals. We believe in the existence of side 
minima corresponding to reorganized Koopmans’ ions because we believe in the 
physical reality of the picture given by MO theory and this belief is justified as long 
as reorganization can be calculated since also relaxation should be a feasible 
physical concept. If the Koopmans wave function for an ionic state is not 
approximately equivalent to a stable self-consistent solution we are confronted with 
a failure of the MO picture. 

In the following we shall discuss the formal conditions to be fulfilled for a 
successful calculation of the reorganization effect and we shall deduce a recipe 
for its practical realization. 

Formalism. - Let us take as a starting point the closed shell Hurtree-Fock 
solution for the neutral molecule, i.e. the self-consistent (doubly occupied and 
virtual) eigenfunctions q n  of the 0perator.F 

occ 
F = h + c (2 f ”  -Y”) . (1) 

Assume that an electron occupying the orbital q i  is removed. The reorganized 
wave function is solution of the open shell Hartree-Fock problem with an operator 

. F i  (see e.g. [ 3 ]  [lo]) 

n 
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(The open shell operator consists of three differing parts, depending on the matrix 
elements to be constructed. (2a) connects doubly occupied orbitals with each other 
and doubly occupied orbitals with virtual orbitals, (2b) singly occupied orbitals and 
singly occupied with virtual orbitals, (2c) connects doubly and singly occupied 
orbitals. The matrix to be diagonalized can easily be composed from (2a-c) if the 
orbitals of the previous iteration are used as a basis. If the operators (2b,c) are 
replaced by (2a) we get the simplified 'half-electron operator' [lo-121). Let us define 
now an operatorF, (2) = (1 - i.]F+ iF,. From (1) and (2) follows 

where 0 < j" < 1 ; 7, (0) TF,  .7, (1) =F,. We shall interpret 7, ( 2 )  later on as a m  
operator corresponding to ionization of i, electrons out of q,. Note that the matrix 
elements of the additional operator f l - X 1  in (3c) between the singly occupied 
orbital q 1  and any doubly occupied orbital q d  vanish since (with the usual 
notations) 

<qllfl-cy~ll q d )  = ( v ~ q i l  qiyd)-(qiq1 1 v i q d ) = O .  (4 1 

No similar results can be derived for the operators (3 a, b). 

Theory. - A successful calculation of the reorganization of a Koopmans' state 
meets the following conditions in order to guarantee that the correct side minimum 
will be attained: 

- During the iterative process the wave function should be modified smoothly 
since an abrupt change could lead out of the desired depression of the hypersurface. 
We achieve this by varying i. (see (3)) from 0 to 1 in the course of the first few 
iterations. 

- The singly occupied orbital 9, must not exchange its character with doubly 
occupied orbitals through mixing caused by the diagonalizations. This condition is 
fulfilled automatically if the orbitals are changed smoothly enough. Assume that 
for a given i,, we know the self-consistent eigenfunctions of the operator 8, (&) (3). 
For small 6A the eigenfunctions of 

(d-d, d-v) ( 5  a) 
(s-s, s-v) ( 5  b) Fl(&+ 6 i )  =SF] (2,) - 66 ' 
(d-s) (5c) 
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can be calculated with perturbation theory. Because of (4) and (5c) and because 
F1((n,) is diagonal there will be no mixing of singly and doubly occupied orbitals 
since the connecting matrix elements vanish. Here is the formal reason for the 
feasibility of such calculations. Note that this mixing would not be avoided by the 
half-electron operator ((5a) replacing (5b, c)). In practice the variation of 2 
is carried out in a number of equal steps, each one consisting of a single iteration 
and the critical matrix elements are zeroed artificially. 

- After each iteration the singly occupied orbital must be detected again so that 
the desired occupation scheme can be generated for the next iteration. This is most 
easily achieved if the orbitals are not arranged in energetical order after 
diagonalization (in contrast to what is done usually in Hartree-Fock calculations). 
So the labelling of the orbitals remains unchanged throughout the whole procedure. 

The above considerations indicate a way of calculating the reorganization of 
localized Koopmans’ ions. A localized Koopmans wave function is the single 
determinant function originating from a localized closed shell Hartree-Fock 
determinant if one electron is removed without changing the remaining orbitals. 
The diagonal matrix element of the Fock operator (1) corresponding to the singly 
occupied orbital can serve for an estimation of the ionization energy in Koopmans’ 
approximation. Although neither a localized ion nor its ionization energy are 
physical concepts in a spectroscopical sense they can be used for formal purposes 
in the same way as atomic orbitals and their basis energies contribute to molecular 
orbitals and orbital energies. It can be shown [13] that the reorganization energy 
of localized ions is a transferable quantity which can be used for the estimation 
of the reorganization, polarization and semiinternal correlation effects of canonical 
Koopmans’ ions. 

We calculate the reorganization of localized ions by the same method as for 
canonical ions, the only difference being that the matrix elements between doubly 
and singly occupied orbitals do not vanish automatically (because the Fock 
operator (1) is not diagonal in the basis of localized orbitals) but have to be put 
equal to zero artificially throughout the whole iterative process. Thus the 
reorganization of a localized Koopmans’ ion has been defined in an unambiguous 
way. 

Results. - Calculations on Formaldehyde. For a numerical illustration I choose 
the first molecule I had studied when I was a student of Heinrich Labhart [14]. 
HzCO is well suited for a test of the reorganization behaviour since this molecule 
contains single and double bonds, lone pairs and a heteroatom. The calculations 
have been carried out using a (7s/3p)-basis of Roos & Siegbahn [15] augmented by 
d-type polarization functions (with exponent 0.6) centered on the oxygen atom. 
The results - numbers representing the charge distributions of the Hartree-Fock 
orbitals and of the ionic wave function in Koopmans’ approximation and including 
reorganization as well as an overlap matrix of the reorganized determinants - are 
collected in Tables 1-4. More detailed information can be obtained from the author 
on request. 

The following qualitative observations have been made: 
a) Existence ofsolutions. Stable solutions have been found for all inner shell and 
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canonical as well as localized valence Koopmans’ ions. The reorganization energies 
are in the range from 0.8 eV to 20 eV. 

b) Orthogonality. The overlap between the two inner shell states and between 
inner shell and valence states is negligible. The overlap integrals of different 
canonical valence states amount up to 0.27 after reorganization (Table 4). 
According to the test proposed by Guest & Saunders [16] all total energies are 
variational upper bounds however. 

c) Dependence of the reorganization upon the ionized orbital. The reorganization 
energy of inner shell hole states is much larger than for ionization in the valence 

Table 1. Hartree-Fock orbitals of H2CO (formaldehyde). For these orbitals the coordinates of the 
charge centers and the radii of the charge distributions (LX=((X2)-(X)2)1/2 etc.) are given together 
with a characterization of the orbitals. Coordinates of the nuclei: C at the origin, 0 at X= 1.21 A, 

H at X =  -0.55 A, Y =  ir0.94 A 

X(A)  Y Z LX LY 

Inner shell orbitals 
1 1.210 0 0 0.070 0.070 
2 0  0 0 0.095 0.096 

Localized valence orbitals 
3 0.737 0 ir0.237 0.532 0.361 
4 -0.387 50.639 0 0.440 0.503 
5 1.326 50.278 0 0.413 0.402 

Canonical valence orbitals 
6 0.875 0 0 0.452 0.384 
7 -0.043 0 0 0.855 0.632 
8 0.194 0 0 0.733 0.790 
9 0.909 0 0 0.930 0.431 

10 0.783 0 0 0.647 0.384 
11 0.635 0 0 0.893 0.747 

LZ 

0.070 
0.096 

0.477 
0.427 
0.351 

0.376 
0.435 
0.382 
0.351 
0.674 
0.353 

Symmetry Characterization 

a! + bl 
a l  + b2 
a l  + b2 

‘banana bonds’ (BE;) 
C-H bonds (CH) 
lone pairs (LP) 

%BB %CH %LI’ 
a1 70 3 27 
a1 1 79 20 
b2 65 35 
a1 29 18 53 

b2 35 65 
bl 100 

- __ 

Table 2. Charge centers and radii of the charge distributions (averaged over the occupied orbitals), 
for  the ionic wave functions of H2CO in Koopmans’ approximation without reorganization. Note the 

invariance of the sum of the ionization energies upon localization in contrast to Table 3 

x (4 Y Z 

Inner shell states 
1 0.528 0 0 
2 0.609 0 0 

Localized valence states 
3 0.559 0 k0.016 
4 0.634 k0.043 0 
5 0.520 50.019 0 

Canonical valence states 
6 0.550 0 0 
7 0.61 1 0 0 
8 0.596 0 0 
9 0.548 0 0 

10 0.556 0 0 
11 0.566 0 0 

LX 

0.805 
0.808 

0.810 
0.774 
0.791 

0.810 
0.776 
0.794 
0.782 
0.804 
0.790 

IP (eV) - LY LZ 

0.526 0.398 560.81 
0.526 0.398 308.95 

0.518 0.374 23.04 
0.481 0.383 19.62 
0.510 0.388 19.29 

0.517 0.387 38.415 
0.500 0.383 23.63 
0.485 0.386 18.88 
0.514 0.388 17.30 
0.517 0.359 13.94 
0.489 0.388 1 1.68 
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shell. The valence orbitals are modified strongly and transformed into orbitals of the 
corresponding ‘Z + 1 molecule’ (H2CF+ or H2NO+). The smallest reorganizations 
appear if an essentially C-H bonding canonical orbital is ionized; also in the 
localized case the smallest reorganizations arise from ionization out of C-H bonds. 
In accordance with the findings of Guest & Saunders [ 161 contracted Hartree-Fock 
orbitals seem to be accompanied with relatively large reorganization energies 
and spreadout orbitals with small reorganizations. The numerical results do not 
allow an exact confirmation of this statement but on the other hand the mean 
radii of the charge, ellipsoids (Table I )  give only a crude description of the charge 
distribution. 

d) Canonical and localized Koopmans’ ions. In the average the reorganization 
energies of localized ions are larger than for canonical Koopmans’ ions because 
localized orbitals are more contracted than canonical MO’s. Hence the sum of the 
reorganization energies is not invariant upon transformation of the Hartree-Fock 
orbitals. 

e) Effect on the electronic charge distribution (see Tables 2 and 3). In all cases a 
shifting of the charge center (as a rule towards the charge center of the ionized 

Table 3. Charge centers and radii of the charge distributions (averaged over the occupied orbitals) 
for the reorganized single determinant ionic wave functions of H2CO. Comparison with Table 2 shows 

the effect of reorganization: Shifting and contraction of the electronic charge 

Inner shell states 
I 0.589 0 
2 0.589 0 

Localized valence states 
3 0.586 0 
4 0.613 k0.028 
5 0.567 k0.015 

Canonical valence states 
6 0.585 0 
7 0.604 0 
8 0.598 0 
9 0.571 0 

10 0.583 0 
11 0.582 0 

0 
0 

- +0.012 
0 
0 

0 
0 
0 
0 
0 
0 

0.780 
0.771 

0.786 
0.766 
0.778 

0.788 
0.766 
0.780 
0.768 
0.786 
0.780 

0.479 
0.469 

0.488 
0.466 
0.483 

0.485 
0.48 1 
0.465 
0.488 
0.490 
0.472 

0.353 
0.373 

0.356 
0.377 
0.365 

0.366 
0.372 
0.375 
0.367 
0.342 
0.368 

540.68 
296.08 

20.85 
17.86 
15.46 

35.78 
22.77 
18.05 
14.64 
12.16 
9.37 

20.13 
12.87 

2.19 
1.76 
3.83 

2.67 
0.86 
0.83 
2.66 
I .78 
2.31 

Table 4. Overlap matrix for the reorganized wave functions of the canonical Koopmans’ ions of HlC 0 
(in exponential notation). The numbering of the states corresponds to the numbers of Table 3 
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orbital) and a contraction of the charge distribution by some percents of an A 
are observed. The effect on individual orbitals is much larger than the perturbation 
of the total charge density because orbitals are subject not only to the perturbing, 
potential but also to mutual orthogonality conditions. As a rule the net shifting, 
of the charge center results from mutually opposite orbital shiftings which can be: 
larger by an order of magnitude. 

f ,  Effect on the singly occupied orbital. In the majority of cases the shape of the 
singly occupied orbital is not drastically modified; this does not apply to the highest 
three canonical orbitals (in these cases the calculation was significantly more 
difficult to be carried out although the corresponding ionic functions are the lowest 
ones of their symmetry). The singly occupied orbital has always been contracted: no 
‘spreading-out of the surplus positive charge’ could be observed. 

Conclusions. - We have shown that the electronic relaxation of canonical 
Koopmans’ ions can successfully be calculated due to the fact that there is no direct 
mixing of singly and doubly occupied orbitals. Thus the orbital characterizations ar’e 
maintained under the relaxation process to a good approximation and therefore 
the reorganized wave functions can be identified with Koopmans’ functions. If 
similar conditions are imposed artificially the relaxation of localized k’oopmans’ 
ions can be defined and calculated. 

The results on formaldehyde indicate that the effect of relaxation can be 
characterized as coulombic interaction between a positive charge in the emptied 
orbital and the remaining electrons. The more the positive charge is pointlike the 
larger will be its influence. This is particularly true for localized orbitals because of 
the small contribution of exchange corrections. As a rule the change of the emptied 
orbital itself is less drastic than the change of the charge density of the doublly 
occupied orbital space. On the other hand we find often a strong mixing of the 
doubly occupied orbitals among themselves. 

This work is part of the project Nr. 2.733-0.77 of the Schweizerischer Nationaljonds zur Forderung 
der wissenschaftlichen Forschung. 
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